Math 115 - Quiz 2

February 8, 2013

Problem 1 (4 points): Let

$$
f(x)= \begin{cases}\left(x^{2}-4\right) /(x+2) & \text { if } x \neq-2 \\ k & \text { if } x=-2\end{cases}
$$

For what value of k will f be continuous on $(-\infty, \infty)$.

Problem 2 (4 points): Under a set of controlled laboratory conditions, the size of the population of a certain bacteria culture at time t, in minutes, is described by the function

$$
P=f(t)=3 t^{2}+2 t+1
$$

Find the rate of population growth at $i=10$ minutes.

$$
\begin{aligned}
& \text { 1) } \lim _{x \rightarrow-2} \frac{\left(x^{2}-4\right)}{(x+2)}=\lim _{x \rightarrow-2} \frac{(x+2)(x-2)}{x+2}=\lim _{x \rightarrow-2}(x-2)=-4 \\
& k=-4
\end{aligned}
$$

2) $f^{\prime}(t)=6 t+2$

$$
f^{\prime}(10)=6(10)+2=62
$$

Problem 3 (2 points): Prove

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]
$$

Mint: Set $S(x)=f(x)+g(x)$. Take the limit definition of the derivative of $S(x)$ and then swap $f(x)+g(x)=S(x)$ back in for $S(X)$. From there, use the properties of limits to get what you're looking for.

Bonus (2 points): Use the Intermediate Value Theorem to show that there exists a number c in the given interval such that $f(x)=M$. Then find its value.

$$
f(x)=x^{2}-x+1 \text { on }[-1,4] ; M=7
$$

3)

$$
\begin{aligned}
\text { let } S(x) & =f(x)+g(x) \\
\frac{\partial}{\partial x}[S(x)] & =\lim _{h \rightarrow 0} \frac{S(x+h)-S(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(f(x+h)+g(x+h))-(f(x)-g(x))}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)+g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h}\right] \\
& =\lim _{h>0}\left[\frac{f(x+h)-f(x)}{h}\right]+\lim _{h \rightarrow 0}\left[\frac{g(x+h)-g(x)}{h}\right] \\
& =\frac{\partial}{\partial x}[f(x)]+\frac{\partial}{\partial x}[g(x)]
\end{aligned}
$$

B)

$$
\begin{aligned}
& f(-1)=(-1)^{2}-(-1)+1=3 \\
& f(4)=(4)^{2}-(4)+1=13 \\
& 3<7<13 \\
& 3 \angle M<13 \\
& \text { so there exists a } \quad \text { a so that } \\
& f(c)=M
\end{aligned}
$$

Quiz 4 (10 pis)
find the derivative of

$$
\begin{aligned}
& f(x)=\frac{x^{4}-3 x^{2}+2}{x^{2}-2} f^{\prime}(x)=\frac{\left(4 x^{3}-6 x\right)\left(x^{2}-2\right)-\left(x^{4}-3 x^{2}+2\right)\left(x x^{2} x^{\prime}\right)}{\left(x^{2}-2\right)^{2}} \\
& g(x)=\frac{1}{\sqrt{3 x^{2}+2 x+2}}=\left(3 x^{2}+2 x+2\right)^{-1 / 2} \\
& f^{\prime}(x)=-1 / 2\left(3 x^{2}+2 x+2\right)^{-3 / 2}(6 x+2) \\
& h(x)=\sqrt{3 x^{2}-2 x+1}=\left(3 x^{2}-2 x+1\right)^{1 / 2} \\
& f^{\prime}(x)=1 / 2\left(3 x^{2}-2 x+1\right)^{-1 / 2}(6 x-2) \\
& =
\end{aligned}
$$

Math 115 -Quiz 5

March 27, 2013

Problem 1
(a) On the following graph, which of the following points are relative extrema? (1 point per correct, -0.5 per wrong, 3 points total)

$\begin{array}{ll}\text { (II) } & (2,2) \\ \text { (VI) } & (6,2) \\ \text { (X) } & (10,4)\end{array}$
$\begin{array}{ll}\text { (III) } & (3,3) \\ \text { (VII) } & (7,3) \\ \text { (XI) } & (11,3)\end{array}$
(IV) $(4,2)$
(VIII) $(8,4)$
(XII) $(12,2)$
(b) Draw the sign diagram for f^{\prime}. (2 points)

Problem 2 Determine the regions where the graph of $f(x)=x^{3}-x^{2}-5 x+8$ is concave upward, concave downward, increasing, and decreasing. (5 points)

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-2 x-5 \\
& f^{\prime \prime}(x)=6 x-2
\end{aligned}
$$

$$
0=3 x^{2}-2 x-5
$$

$$
0=3 x^{2}+3 x-5 x-5
$$

$$
0=3 x(x+1)=-5(x+1)
$$

$$
\theta=(3 x-5)(x+1)
$$

$$
x=-1,5 / 3
$$

Math 115- Quiz 6

April 4, 2013

Problem 1 Solve for x,
(a) $3^{x-x^{2}}=1 / 9^{x}$
(b) $3^{2 x}-12 \cdot 3^{x}+27=0$

Problem 2 Simplify.
(a) $\frac{4 b^{-4}}{12 b^{-6}}$

$$
\begin{aligned}
& \text { (a) } 3^{x-x^{2}}=\left(9^{-1}\right)^{x} \\
& 3^{x-x^{2}}=\left(3^{-2}\right)^{x} \\
& 3^{x-x^{2}}=3^{-2 x} \\
& x^{-x}-x^{2}=-2 x \\
& 3 x-x^{2}=0 \\
& x(3-x)=0 \\
& x=0 \text { or } x=3 \\
& \text { 2a) } \frac{4}{12} b^{-4-(-6)} \\
& 1 / 3 b^{2}
\end{aligned}
$$

(b) $\left(x^{-b / a}\right)^{-a / b}$
(b) lex $u=3^{x}$ $3^{2 x}-12 \cdot 3^{x}+27=0$
$u^{2}-12 u+27=0$
$(v-9)(v-3)=0$
$u=9 \quad u=3$
$3^{x}=4 \quad 3^{x}=3$
$x=2 \quad x=1$

$$
\text { 2b) } \begin{aligned}
& \left(x^{-b / a)^{-a / b}}\right. \\
= & x^{(-b / a)(-a / b)} \\
= & x^{\frac{b a}{a b}}
\end{aligned}
$$

1

$$
\begin{aligned}
& =x^{\prime} \\
& =x
\end{aligned}
$$

Math 115 - Quiz 7

April 12, 2013

Problem (2 points each) Find the derivative of the following functions:
(a) $\quad f(x)=x^{3} e^{x}$
(b) $\quad g(x)=3 e^{x}$
(c) $\quad h(x)=\ln \left(x^{3}+1\right)$
(d) $\quad k(x)=x^{2} \ln (x)$
(e) $\quad l(x)=\ln \left[(x+1)\left(x^{3}+2\right)\right]$

Bonus problem (5 points) Use logarithmic differentiation to find the derivative of the following:

$$
y=(x-1)^{2}(x+1)^{3}(x+3)^{4}
$$

(a) $f^{\prime}(x)=\left(\beta x^{2}\right) e^{x}+\left(e^{x}\right)\left(x^{3}\right)$ product rule
(b) $g^{\prime}(x)=\frac{\partial}{\partial x}\left[3 e^{x}\right]-3 \vec{x}[-x]=3 e^{x}$
(c) $h^{\prime}(x)=\frac{\frac{x}{\partial x}\left[x^{3}+1\right]}{x^{3}+1}=\frac{3 x^{2}}{x^{3}+1}$
(d) $\quad(2 x) \ln x+\left(\frac{1}{x}\right)\left(x^{2}\right)$
product rule $=2 x \ln x+x=x(2 \ln x+1)$
(e) $\ln \left[(x+1)\left(x^{3}+2\right)\right]=\ln (x+1)+\ln \left(x^{3}+1\right)$ $f^{\prime}(x)=\frac{1}{x+1}+\frac{3 x^{2}}{x^{3}+1}$

$$
\left\{\begin{aligned}
& \ln Y=\ln \left[(x-1)^{2}(x+1)^{3}(x+3)^{4}\right] \\
&=\ln (x-1)^{2}+\ln (x+1)^{3}+\ln (x+3)^{4} \\
&=2 \ln (x-1)+3 \ln (x+1)+4(\ln (x+3)) \\
& \frac{\partial}{\partial x}[\ln Y]=2 \frac{1}{x-1}+3 \frac{1}{x+1}+4 \frac{1}{x+3} \\
& \frac{Y^{\prime}}{Y}=\frac{2}{x-1}+\frac{3}{x+1}+\frac{4}{x+3} \\
& Y^{\prime}=Y\left(\frac{2}{x-1}+\frac{3}{x+1}+\frac{4}{x+3}\right) \\
&=(x-1)^{2}(x+1)^{3}(x+3)^{4}\left(\frac{2}{x-1}+\frac{3}{x+1}+\frac{y}{x+3}\right)
\end{aligned}\right.
$$

Math 115 - Quiz 8

April 26, 2013

Problem 1 (5 points) Phosphorus 32 (P-32) has a half-life of 14.2 days. If 100 g of this substance are present initially, find the amount present after t days. What will be left after 7.1 days?

Problem 2 (5 points) Find the indefinite integral:

$$
\int x^{2}+x-x^{-3} d x
$$

Bonus problem (5 points) Find an approximation of the area of the region under the graph of $f(x)$ by computing the Riemann sum. Use the given midpoints as the representative heights:

$$
\begin{aligned}
& \text { 1) } Q(t)=Q_{0} e^{\pi t} \\
& S 0=100 e^{k(14,2)} \\
& \text { 2) } \\
& \int x^{2}+x-x^{-3} d x \\
& =\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{2} x^{-2} \\
& \text { bonus) rectangles }(n)=6 \\
& 1 / 2=e^{k(14,2)} \\
& \ln (1 / 2)=k 14,2 \\
& k=\frac{\ln (1 / 2)}{14.2} \\
& \approx-0.0488 \\
& Q(7.1) \approx 100 e^{-0.0488(7.1)} \\
& \approx 70.71
\end{aligned}
$$

Math 115 - Quiz 9

May 3, 2013

Problem 1 (5 points) Find the following indefinite integrals:
(a)
(b)

$$
\int\left(2+x+2 x^{2}+e^{x}\right) d x
$$

$$
\int \frac{1}{x}+\frac{1}{x^{2}} d x
$$

Problem 2 (5 points) Find the value of the following definite integrals:
(a)
(b)

$$
\int_{1}^{3} \frac{2}{x} d x
$$

$$
\int_{1}^{8} 4 x^{1 / 2}+3 d x
$$

Bonus problem (5 points) Evaluate using u-substitution:

$$
\int_{-1}^{1} x^{2}\left(x^{3}+1\right)^{4} d x
$$

$$
\begin{aligned}
\text { Ia) } & \int 2+x+2 x^{2}+e^{x} d x \\
= & 2 x+\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+e^{x}+c
\end{aligned}
$$

16)

$$
\text { b) } \begin{aligned}
& \int \frac{1}{x}+\frac{1}{x^{2}} d x \\
= & \ln |x|+\frac{-1}{x}+c
\end{aligned}
$$

$$
\text { 2a) } \int_{1}^{3} \frac{2}{x} d x=2 \int_{1}^{3} \frac{1}{x} d x
$$

$$
\begin{aligned}
&=\left.2 \ln |x|\right|_{1} ^{3}=2(\ln 3-\ln 1) \\
&=2 \ln 3 \approx 2.197
\end{aligned}
$$

2b) $\int_{1}^{8} 4 x^{1 / 2}+30 x=4 \frac{2}{3} x^{3 / 2}+\left.3 x\right|_{1} ^{8}$

$$
=\left(8 / 3(8)^{1 / 2}+3(8)\right)-\left(8 / 3(1)^{31 / 2}+3(1)\right)
$$

$$
\approx 78.67
$$

$$
\left\{\begin{array}{l}
\text { Bonus } \\
\text { let } u=x^{3}+1 \\
\frac{\partial v}{\partial x}=3 x^{2} \quad d v=3 x^{2} \partial x \\
\quad \sqrt{3} d u=x^{2} \partial x \\
x=-1 \rightarrow u=(-1)^{3}+1=0 \\
x=1 \rightarrow u=(1)^{3}+1=2 \\
\int_{u=0}^{v=2} u^{4} \frac{1}{3} \partial u=\frac{1}{3} \int_{0}^{2} u^{4} \partial u \\
=\left.\frac{1}{3} \frac{1}{5} u^{5}\right|_{0} ^{2}=\frac{1}{15}\left(2^{5}-0^{5}\right) \\
=2.13 \overline{3}
\end{array}\right.
$$

